A new method for estimating population receptive field topography in visual cortex
نویسندگان
چکیده
We introduce a new method for measuring visual population receptive fields (pRF) with functional magnetic resonance imaging (fMRI). The pRF structure is modeled as a set of weights that can be estimated by solving a linear model that predicts the Blood Oxygen Level-Dependent (BOLD) signal using the stimulus protocol and the canonical hemodynamic response function. This method does not make a priori assumptions about the specific pRF shape and is therefore a useful tool for uncovering the underlying pRF structure at different spatial locations in an unbiased way. We show that our method is more accurate than a previously described method (Dumoulin and Wandell, 2008) which directly fits a 2-dimensional isotropic Gaussian pRF model to predict the fMRI time-series. We demonstrate that direct-fit models do not fully capture the actual pRF shape, and can be prone to pRF center mislocalization when the pRF is located near the border of the stimulus space. A quantitative comparison demonstrates that our method outperforms the direct-fit methods in the pRF center modeling by achieving higher explained variance of the BOLD signal. This was true for direct-fit isotropic Gaussian, anisotropic Gaussian, and difference of isotropic Gaussians model. Importantly, our model is also capable of exploring a variety of pRF properties such as surround suppression, receptive field center elongation, orientation, location and size. Additionally, the proposed method is particularly attractive for monitoring pRF properties in the visual areas of subjects with lesions of the visual pathways, where it is difficult to anticipate what shape the reorganized pRF might take. Finally, the method proposed here is more efficient in computation time than direct-fit methods, which need to search for a set of parameters in an extremely large searching space. Instead, this method uses the pRF topography to constrain the space that needs to be searched for the subsequent modeling.
منابع مشابه
Receptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملPopulation receptive field estimates in human visual cortex
We introduce functional MRI methods for estimating the neuronal population receptive field (pRF). These methods build on conventional visual field mapping that measures responses to ring and wedge patterns shown at a series of visual field locations and estimates the single position in the visual field that produces the largest response. The new method computes a model of the population recepti...
متن کاملThe attentional field revealed by single-voxel modeling of fMRI time courses.
The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospa...
متن کاملTopographical estimation of visual population receptive fields by FMRI.
Visual cortex is retinotopically organized so that neighboring populations of cells map to neighboring parts of the visual field. Functional magnetic resonance imaging allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of the visual field that activates the cells within each voxel. Prior, direct, pRF estimation methods(1) suffer from certain limitations: 1) the ...
متن کاملVisual field map clusters in human frontoparietal cortex
The visual neurosciences have made enormous progress in recent decades, in part because of the ability to drive visual areas by their sensory inputs, allowing researchers to define visual areas reliably across individuals and across species. Similar strategies for parcellating higher-order cortex have proven elusive. Here, using a novel experimental task and nonlinear population receptive field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 81 شماره
صفحات -
تاریخ انتشار 2013